Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94.023
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3102, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600072

RESUMO

Several studies have suggested the imprinting of SARS-CoV-2 immunity by original immune challenge without addressing the formation of the de novo response to successive antigen exposures. As this is crucial for the development of the original antigenic sin, we assessed the immune response against the mutated epitopes of omicron SARS-CoV-2 after vaccine breakthrough. Our data demonstrate a robust humoral response in thrice-vaccinated individuals following omicron breakthrough which is a recall of vaccine-induced memory. The humoral and memory B cell responses against the altered regions of the omicron surface proteins are impaired. The T cell responses to mutated epitopes of the omicron spike protein are present due to the high cross-reactivity of vaccine-induced T cells rather than the formation of a de novo response. Our findings, therefore, underpin the speculation that the imprinting of SARS-CoV-2 immunity by vaccination may lead to the development of original antigenic sin if future variants overcome the vaccine-induced immunity.


Assuntos
Infecções Irruptivas , Vacinas , Humanos , Vacinação , Epitopos , SARS-CoV-2 , Imunidade , Anticorpos Antivirais , Anticorpos Neutralizantes
2.
BMC Ophthalmol ; 24(1): 160, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600458

RESUMO

BACKGROUND: To describe a case of bilateral multifocal chorioretinitis as the only presentation of acute West Nile virus (WNV) infection in the absence of neurological involvement. CASE PRESENTATION: A 78-year-old Italian woman was admitted to our emergency department because she noticed blurry vision in both eyes. She did not report fever, fatigue, or neurological symptoms in the last few days. Multimodal imaging showed the presence of bilateral hyperfluorescent lesions with a linear distribution, that corresponded to hypocyanescent spots on indocyanine green angiography. Antibody serology showed the presence of IgM antibodies, IgG antibodies, and ribonucleic acid (RNA) for WNV. Magnetic resonance imaging (MRI) of the brain ruled out central nervous system involvement. Three months later, the patient reported spontaneous resolution of her symptoms and remission of the chorioretinal infiltrates. CONCLUSIONS: In endemic areas, it is important to think of acute WNV infection as an explanatory etiology in cases of multifocal chorioretinitis, even without neurological involvement.


Assuntos
Coriorretinite , Infecções Oculares Virais , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Humanos , Feminino , Idoso , Febre do Nilo Ocidental/complicações , Febre do Nilo Ocidental/diagnóstico , Febre do Nilo Ocidental/epidemiologia , Infecções Oculares Virais/diagnóstico , Coriorretinite/etiologia , Corpo Vítreo/patologia , Anticorpos Antivirais
3.
J Gen Virol ; 105(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38656455

RESUMO

Porcine epidemic diarrhea (PED) is a serious disease in piglets that leads to high mortality. An effective measure that provides higher IgA levels in the intestine and milk is required to decrease losses. Porcine epidemic diarrhea virus (PEDV) was dissolved in calcium alginate (Alg) and combined with chitosan (CS) via electrostatic interactions between cationic chitosan and anionic alginate to create a porous gel (Alg-CS+PEDV). The gel was used to immunize mice orally or in combination with subcutaneous injections of inactivated PEDV vaccine. At 12 and 24 days after immunization, levels of IgA and IgG in Alg-CS+PEDV were higher than with normal PEDV oral administration. At 24 days after immunization, the concentration of IFN-γ in Alg-CS+PEDV was higher than with normal PEDV oral administration. Furthermore, oral administration combining subcutaneous immunization induced higher levels of IgG and IgA than oral administration alone. Our study provides a new method for the preparation and administration of oral vaccines to achieve enhanced mucosal immunity against PEDV.


Assuntos
Alginatos , Anticorpos Antivirais , Quitosana , Imunidade nas Mucosas , Imunoglobulina A , Imunoglobulina G , Vírus da Diarreia Epidêmica Suína , Vacinas Virais , Animais , Administração Oral , Vírus da Diarreia Epidêmica Suína/imunologia , Alginatos/administração & dosagem , Quitosana/administração & dosagem , Camundongos , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Anticorpos Antivirais/imunologia , Imunoglobulina A/imunologia , Imunoglobulina G/sangue , Suínos , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia , Doenças dos Suínos/imunologia , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/virologia , Feminino , Géis/administração & dosagem , Camundongos Endogâmicos BALB C , Interferon gama/imunologia , Ácido Glucurônico/administração & dosagem , Ácidos Hexurônicos/administração & dosagem
4.
Nat Commun ; 15(1): 3450, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664395

RESUMO

Influenza A viruses (IAVs) of subtype H9N2 have reached an endemic stage in poultry farms in the Middle East and Asia. As a result, human infections with avian H9N2 viruses have been increasingly reported. In 2017, an H9N2 virus was isolated for the first time from Egyptian fruit bats (Rousettus aegyptiacus). Phylogenetic analyses revealed that bat H9N2 is descended from a common ancestor dating back centuries ago. However, the H9 and N2 sequences appear to be genetically similar to current avian IAVs, suggesting recent reassortment events. These observations raise the question of the zoonotic potential of the mammal-adapted bat H9N2. Here, we investigate the infection and transmission potential of bat H9N2 in vitro and in vivo, the ability to overcome the antiviral activity of the human MxA protein, and the presence of N2-specific cross-reactive antibodies in human sera. We show that bat H9N2 has high replication and transmission potential in ferrets, efficiently infects human lung explant cultures, and is able to evade antiviral inhibition by MxA in transgenic B6 mice. Together with its low antigenic similarity to the N2 of seasonal human strains, bat H9N2 fulfils key criteria for pre-pandemic IAVs.


Assuntos
Quirópteros , Furões , Vírus da Influenza A Subtipo H9N2 , Infecções por Orthomyxoviridae , Replicação Viral , Animais , Furões/virologia , Vírus da Influenza A Subtipo H9N2/genética , Vírus da Influenza A Subtipo H9N2/fisiologia , Vírus da Influenza A Subtipo H9N2/patogenicidade , Vírus da Influenza A Subtipo H9N2/isolamento & purificação , Quirópteros/virologia , Humanos , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/virologia , Infecções por Orthomyxoviridae/imunologia , Camundongos , Filogenia , Influenza Humana/transmissão , Influenza Humana/virologia , Pulmão/virologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue
5.
Sci Rep ; 14(1): 9503, 2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664455

RESUMO

The individual results of SARS-CoV-2 serological tests measured after the first pandemic wave of 2020 cannot be directly interpreted as a probability of having been infected. Plus, these results are usually returned as a binary or ternary variable, relying on predefined cut-offs. We propose a Bayesian mixture model to estimate individual infection probabilities, based on 81,797 continuous anti-spike IgG tests from Euroimmun collected in France after the first wave. This approach used serological results as a continuous variable, and was therefore not based on diagnostic cut-offs. Cumulative incidence, which is necessary to compute infection probabilities, was estimated according to age and administrative region. In France, we found that a "negative" or a "positive" test, as classified by the manufacturer, could correspond to a probability of infection as high as 61.8% or as low as 67.7%, respectively. "Indeterminate" tests encompassed probabilities of infection ranging from 10.8 to 96.6%. Our model estimated tailored individual probabilities of SARS-CoV-2 infection based on age, region, and serological result. It can be applied in other contexts, if estimates of cumulative incidence are available.


Assuntos
Anticorpos Antivirais , Teorema de Bayes , COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , COVID-19/sangue , COVID-19/diagnóstico , COVID-19/imunologia , COVID-19/virologia , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , Pessoa de Meia-Idade , Adulto , França/epidemiologia , Idoso , Anticorpos Antivirais/sangue , Probabilidade , Imunoglobulina G/sangue , Adolescente , Feminino , Teste Sorológico para COVID-19/métodos , Adulto Jovem , Masculino , Incidência , Criança , Pré-Escolar , Lactente , Idoso de 80 Anos ou mais
6.
J Korean Med Sci ; 39(14): e134, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622939

RESUMO

The global research and pharmaceutical community rapidly mobilized to develop treatments for coronavirus disease 2019 (COVID-19). Existing treatments have been repurposed and new drugs have emerged. Here we summarize mechanisms and clinical trials of COVID-19 therapeutics approved or in development. Two reviewers, working independently, reviewed published data for approved COVID-19 vaccines and drugs, as well as developmental pipelines, using databases from the following organizations: United States Food and Drug Administration (US-FDA), European Medicines Agency (EMA), Japanese Pharmaceutical and Medical Devices Agency (PMDA), and ClinicalTrials.gov. In all, 387 drugs were found for initial review. After removing unrelated trials and drugs, 66 drugs were selected, including 17 approved drugs and 49 drugs under development. These drugs were classified into six categories: 1) drugs targeting the viral life cycle 2) Anti-severe acute respiratory syndrome coronavirus 2 Monoclonal Antibodies, 3) immunomodulators, 4) anti-coagulants, 5) COVID-19-induced neuropathy drugs, and 6) other therapeutics. Among the 49 drugs under development are the following: 6 drugs targeting the viral life cycle, 12 immunosuppression drugs, 2 immunostimulants, 2 HIF-PHD targeting drugs, 3 GM-CSF targeting drugs, 5 anti-coagulants, 2 COVID-19-induced neuropathy drugs, and 17 others. This review provides insight into mechanisms of action, properties, and indications for COVID-19 medications.


Assuntos
COVID-19 , Estados Unidos , Humanos , SARS-CoV-2 , Vacinas contra COVID-19/uso terapêutico , Antivirais/uso terapêutico , Antivirais/farmacologia , Anticorpos Antivirais , Preparações Farmacêuticas
7.
PLoS Negl Trop Dis ; 18(4): e0012100, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38635656

RESUMO

Zika virus (ZIKV), an arbovirus from the Flaviviridae family, is the causative agent of Zika fever, a mild and frequent oligosymptomatic disease in humans. Nonetheless, on rare occasions, ZIKV infection can be associated with Guillain-Barré Syndrome (GBS), and severe congenital complications, such as microcephaly. The oligosymptomatic disease, however, presents symptoms that are quite similar to those observed in infections caused by other frequent co-circulating arboviruses, including dengue virus (DENV). Moreover, the antigenic similarity between ZIKV and DENV, and even with other members of the Flaviviridae family, complicates serological testing due to the high cross-reactivity of antibodies. Here, we designed, produced in a prokaryotic expression system, and purified three multiepitope proteins (ZIKV-1, ZIKV-2, and ZIKV-3) for differential diagnosis of Zika. The proteins were evaluated as antigens in ELISA tests for the detection of anti-ZIKV IgG using ZIKV- and DENV-positive human sera. The recombinant proteins were able to bind and detect anti-ZIKV antibodies without cross-reactivity with DENV-positive sera and showed no reactivity with Chikungunya virus (CHIKV)- positive sera. ZIKV-1, ZIKV-2, and ZIKV-3 proteins presented 81.6%, 95%, and 66% sensitivity and 97%, 96%, and 84% specificity, respectively. Our results demonstrate the potential of the designed and expressed antigens in the development of specific diagnostic tests for the detection of IgG antibodies against ZIKV, especially in regions with the circulation of multiple arboviruses.


Assuntos
Arbovírus , Febre de Chikungunya , Vírus da Dengue , Dengue , Infecção por Zika virus , Zika virus , Humanos , Infecção por Zika virus/diagnóstico , Zika virus/genética , Epitopos , Anticorpos Antivirais , Imunoglobulina G
8.
PLoS One ; 19(4): e0297833, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635725

RESUMO

Influenza viruses cause epidemics and can cause pandemics with substantial morbidity with some mortality every year. Seasonal influenza vaccines have incomplete effectiveness and elicit a narrow antibody response that often does not protect against mutations occurring in influenza viruses. Thus, various vaccine approaches have been investigated to improve safety and efficacy. Here, we evaluate an mRNA influenza vaccine encoding hemagglutinin (HA) proteins in a BALB/c mouse model. The results show that mRNA vaccination elicits neutralizing and serum antibodies to each influenza virus strain contained in the current quadrivalent vaccine that is designed to protect against four different influenza viruses including two influenza A viruses (IAV) and two influenza B (IBV), as well as several antigenically distinct influenza virus strains in both hemagglutination inhibition assay (HAI) and virus neutralization assays. The quadrivalent mRNA vaccines had antibody titers comparable to the antibodies elicited by the monovalent vaccines to each tested virus regardless of dosage following an mRNA booster vaccine. Mice vaccinated with mRNA encoding an H1 HA had decreased weight loss and decreased lung viral titers compared to mice not vaccinated with an mRNA encoding an H1 HA. Overall, this study demonstrates the efficacy of mRNA-based seasonal influenza vaccines are their potential to replace both the currently available split-inactivated, and live-attenuated seasonal influenza vaccines.


Assuntos
Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Animais , Camundongos , Humanos , Hemaglutininas , Vacinas de mRNA , Anticorpos Antivirais , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Influenza Humana/prevenção & controle , RNA Mensageiro/genética
9.
Biomed Environ Sci ; 37(2): 178-186, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38582980

RESUMO

Objective: This study aimed to compare the current Essen rabies post-exposure immunization schedule (0-3-7-14-28) in China and the simple 4-dose schedule (0-3-7-14) newly recommended by the World Health Organization in terms of their safety, efficacy, and protection. Methods: Mice were vaccinated according to different immunization schedules, and blood was collected for detection of rabies virus neutralizing antibodies (RVNAs) on days 14, 21, 28, 35, and 120 after the first immunization. Additionally, different groups of mice were injected with lethal doses of the CVS-11 virus on day 0, subjected to different rabies immunization schedules, and assessed for morbidity and death status. In a clinical trial, 185 rabies-exposed individuals were selected for post-exposure vaccination according to the Essen schedule, and blood was collected for RVNAs detection on days 28 and 42 after the first immunization. Results: A statistically significant difference in RVNAs between mice in the Essen and 0-3-7-14 schedule groups was observed on the 35th day ( P < 0.05). The groups 0-3-7-14, 0-3-7-21, and 0-3-7-28 showed no statistically significant difference ( P > 0.05) in RVNAs levels at any time point. The post-exposure immune protective test showed that the survival rate of mice in the control group was 20%, whereas that in the immunization groups was 40%. In the clinical trial, the RVNAs positive conversion rates on days 28 (14 days after 4 doses) and 42 (14 days after 5 doses) were both 100%, and no significant difference in RVNAs levels was observed ( P > 0.05). Conclusion: The simple 4-dose schedule can produce sufficient RVNAs levels, with no significant effect of a delayed fourth vaccine dose (14-28 d) on the immunization potential.


Assuntos
Vacina Antirrábica , Vírus da Raiva , Raiva , Animais , Camundongos , Raiva/prevenção & controle , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinação , China , Profilaxia Pós-Exposição
10.
Indian Pediatr ; 61(4): 370-374, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38597102

RESUMO

Mumps is a global public health problem caused by mumps virus, a member of paramyxoviridae family. MMR (Mumps, Measles, Rubella), an effective vaccine, has been incorporated into routine immunization schedules in over 100 countries. On the contrary, in India, vaccine against mumps has not been included in the routine immunization schedule as mumps is still not viewed as a significant public health problem by the government to warrant such an intervention. An increasing number of mumps outbreaks being reported from many parts of the country in the recent past, is matter of concern. The current paper reviews the situation of mumps in India including the recent surge, and discusses the remedial measures to contain these outbreaks. We conclude that inclusion of Mumps component as MMR vaccine in the Universal Immunization Programme of India along with strengthening surveillance is required to tackle the situation.


Assuntos
Sarampo , Caxumba , Rubéola (Sarampo Alemão) , Humanos , Anticorpos Antivirais , Índia/epidemiologia , Sarampo/epidemiologia , Vacina contra Sarampo-Caxumba-Rubéola , Caxumba/epidemiologia , Caxumba/prevenção & controle , Rubéola (Sarampo Alemão)/epidemiologia
11.
PLoS Negl Trop Dis ; 18(4): e0012077, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38598549

RESUMO

BACKGROUND: Fever is the most frequent symptom in patients seeking care in South and Southeast Asia. The introduction of rapid diagnostic tests (RDTs) for malaria continues to drive patient management and care. Malaria-negative cases are commonly treated with antibiotics without confirmation of bacteraemia. Conventional laboratory tests for differential diagnosis require skilled staff and appropriate access to healthcare facilities. In addition, introducing single-disease RDTs instead of conventional laboratory tests remains costly. To overcome some of the delivery challenges of multiple separate tests, a multiplexed RDT with the capacity to diagnose a diverse range of tropical fevers would be a cost-effective solution. In this study, a multiplex lateral flow immunoassay (DPP Fever Panel II Assay) that can detect serum immunoglobulin M (IgM) and specific microbial antigens of common fever agents in Asia (Orientia tsutsugamushi, Rickettsia typhi, Leptospira spp., Burkholderia pseudomallei, Dengue virus, Chikungunya virus, and Zika virus), was evaluated. METHODOLOGY/PRINCIPAL FINDINGS: Whole blood (WB) and serum samples from 300 patients with undefined febrile illness (UFI) recruited in Vientiane, Laos PDR were tested using the DPP Fever Panel II, which consists of an Antibody panel and Antigen panel. To compare reader performance, results were recorded using two DPP readers, DPP Micro Reader (Micro Reader 1) and DPP Micro Reader Next Generation (Micro Reader 2). WB and serum samples were run on the same fever panel and read on both micro readers in order to compare results. ROC analysis and equal variance analysis were performed to inform the diagnostic validity of the test compared against the respective reference standards of each fever agent (S1 Table). Overall better AUC values were observed in whole blood results. No significant difference in AUC performance was observed when comparing whole blood and serum sample testing, except for when testing for R. typhi IgM (p = 0.04), Leptospira IgM (p = 0.02), and Dengue IgG (p = 0.03). Linear regression depicted R2 values had ~70% agreement across WB and serum samples, except when testing for leptospirosis and Zika, where the R2 values were 0.37 and 0.47, respectively. No significant difference was observed between the performance of Micro Reader 1 and Micro Reader 2, except when testing for the following pathogens: Zika IgM, Zika IgG, and B pseudomallei CPS Ag. CONCLUSIONS/SIGNIFICANCE: These results demonstrate that the diagnostic accuracy of the DPP Fever Panel II is comparable to that of commonly used RDTs. The optimal cut-off would depend on the use of the test and the desired sensitivity and specificity. Further studies are required to authenticate the use of these cut-offs in other endemic regions. This multiplex RDT offers diagnostic benefits in areas with limited access to healthcare and has the potential to improve field testing capacities. This could improve tropical fever management and reduce the public health burden in endemic low-resource areas.


Assuntos
Imunoglobulina M , Sensibilidade e Especificidade , Humanos , Imunoglobulina M/sangue , Feminino , Masculino , Laos , Adulto , Febre/diagnóstico , Anticorpos Antibacterianos/sangue , Testes Diagnósticos de Rotina/métodos , Pessoa de Meia-Idade , Adolescente , Adulto Jovem , Anticorpos Antivirais/sangue , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/análise , Imunoensaio/métodos , Imunoensaio/normas
12.
PLoS Pathog ; 20(4): e1012134, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38603762

RESUMO

Monoclonal antibodies (mAbs) are an important class of antiviral therapeutics. MAbs are highly selective, well tolerated, and have long in vivo half-life as well as the capacity to induce immune-mediated virus clearance. Their activities can be further enhanced by integration of their variable fragments (Fvs) into bispecific antibodies (bsAbs), affording simultaneous targeting of multiple epitopes to improve potency and breadth and/or to mitigate against viral escape by a single mutation. Here, we explore a bsAb strategy for generation of pan-ebolavirus and pan-filovirus immunotherapeutics. Filoviruses, including Ebola virus (EBOV), Sudan virus (SUDV), and Marburg virus (MARV), cause severe hemorrhagic fever. Although there are two FDA-approved mAb therapies for EBOV infection, these do not extend to other filoviruses. Here, we combine Fvs from broad ebolavirus mAbs to generate novel pan-ebolavirus bsAbs that are potently neutralizing, confer protection in mice, and are resistant to viral escape. Moreover, we combine Fvs from pan-ebolavirus mAbs with those of protective MARV mAbs to generate pan-filovirus protective bsAbs. These results provide guidelines for broad antiviral bsAb design and generate new immunotherapeutic candidates.


Assuntos
Anticorpos Biespecíficos , Anticorpos Antivirais , Ebolavirus , Doença pelo Vírus Ebola , Animais , Camundongos , Anticorpos Biespecíficos/imunologia , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Ebolavirus/imunologia , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Doença pelo Vírus Ebola/virologia , Anticorpos Antivirais/imunologia , Humanos , Filoviridae/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Monoclonais/imunologia , Feminino , Camundongos Endogâmicos BALB C , Infecções por Filoviridae/imunologia , Infecções por Filoviridae/terapia , Infecções por Filoviridae/prevenção & controle
13.
Hum Vaccin Immunother ; 20(1): 2337984, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38622888

RESUMO

Infection-induced SARS-CoV-2 seroprevalence has been studied worldwide. At Juntendo University Hospital (JUH) in Tokyo, Japan, we have consistently conducted serological studies using the blood residue of healthcare workers (HCWs) at annual health examinations since 2020. In this 2023 study (n = 3,594), N-specific seroprevalence (infection-induced) was examined while univariate and multivariate logistic regression analyses were performed to compute ORs of seroprevalence with respect to basic characteristics of participants. We found that the N-specific seroprevalence in 2023 was 54.1%-a jump from 17.7% in 2022, and 1.6% in 2021-with 37.9% as non-PCR-confirmed asymptomatic infection cases. Those younger than 50 (adjusted OR = 1.62; p < .001) and recipients with 4 doses or less of vaccine had a higher risk to be N-positive, ranging from 1.45 times higher for the participants with 4 doses (p < .001) to 4.31 times higher for the participants with 1 dose (p < .001), compared to those with 5 or more doses. Our findings indicate that robust vaccination programs may have helped alleviate symptoms but consequently caused asymptomatic spread in this hospital, especially among younger HCWs. Although having four doses or less was found to be associated with higher risk of infection, the optimal constitution and intervals for effective booster vaccines warrant further investigations.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Japão/epidemiologia , Estudos Soroepidemiológicos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Hospitais Universitários , Pessoal de Saúde , Anticorpos Antivirais
14.
Front Immunol ; 15: 1358477, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38633249

RESUMO

B cell transcriptomic signatures hold promise for the early prediction of vaccine-induced humoral immunity and vaccine protective efficacy. We performed a longitudinal study in 232 healthy adult participants before/after a 3rd dose of MMR (MMR3) vaccine. We assessed baseline and early transcriptional patterns in purified B cells and their association with measles-specific humoral immunity after MMR vaccination using two analytical methods ("per gene" linear models and joint analysis). Our study identified distinct early transcriptional signatures/genes following MMR3 that were associated with measles-specific neutralizing antibody titer and/or binding antibody titer. The most significant genes included: the interleukin 20 receptor subunit beta/IL20RB gene (a subunit receptor for IL-24, a cytokine involved in the germinal center B cell maturation/response); the phorbol-12-myristate-13-acetate-induced protein 1/PMAIP1, the brain expressed X-linked 2/BEX2 gene and the B cell Fas apoptotic inhibitory molecule/FAIM, involved in the selection of high-affinity B cell clones and apoptosis/regulation of apoptosis; as well as IL16 (encoding the B lymphocyte-derived IL-16 ligand of CD4), involved in the crosstalk between B cells, dendritic cells and helper T cells. Significantly enriched pathways included B cell signaling, apoptosis/regulation of apoptosis, metabolic pathways, cell cycle-related pathways, and pathways associated with viral infections, among others. In conclusion, our study identified genes/pathways linked to antigen-induced B cell proliferation, differentiation, apoptosis, and clonal selection, that are associated with, and impact measles virus-specific humoral immunity after MMR vaccination.


Assuntos
Vacina contra Sarampo-Caxumba-Rubéola , Sarampo , Adulto , Humanos , Imunidade Humoral , Estudos Longitudinais , Anticorpos Antivirais , Perfilação da Expressão Gênica , Proteínas do Tecido Nervoso
15.
Front Cell Infect Microbiol ; 14: 1336013, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38633745

RESUMO

Swine Influenza A Virus (IAV-S) imposes a significant impact on the pork industry and has been deemed a significant threat to global public health due to its zoonotic potential. The most effective method of preventing IAV-S is vaccination. While there are tremendous efforts to control and prevent IAV-S in vulnerable swine populations, there are considerable challenges in developing a broadly protective vaccine against IAV-S. These challenges include the consistent diversification of IAV-S, increasing the strength and breadth of adaptive immune responses elicited by vaccination, interfering maternal antibody responses, and the induction of vaccine-associated enhanced respiratory disease after vaccination. Current vaccination strategies are often not updated frequently enough to address the continuously evolving nature of IAV-S, fail to induce broadly cross-reactive responses, are susceptible to interference, may enhance respiratory disease, and can be expensive to produce. Here, we review the challenges and current status of universal IAV-S vaccine research. We also detail the current standard of licensed vaccines and their limitations in the field. Finally, we review recently described novel vaccines and vaccine platforms that may improve upon current methods of IAV-S control.


Assuntos
Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Doenças dos Suínos , Animais , Suínos , Humanos , Vírus da Influenza A/fisiologia , Vacinas Atenuadas , Anticorpos Antivirais
16.
PLoS One ; 19(4): e0300524, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635805

RESUMO

To address the need for multivalent vaccines against Coronaviridae that can be rapidly developed and manufactured, we compared antibody responses against SARS-CoV, SARS-CoV-2, and several variants of concern in mice immunized with mRNA-lipid nanoparticle vaccines encoding homodimers or heterodimers of SARS-CoV/SARS-CoV-2 receptor-binding domains. All vaccine constructs induced robust anti-RBD antibody responses, and the heterodimeric vaccine elicited an IgG response capable of cross-neutralizing SARS-CoV, SARS-CoV-2 Wuhan-Hu-1, B.1.351 (beta), and B.1.617.2 (delta) variants.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Camundongos , Humanos , SARS-CoV-2/genética , Vacinas Combinadas , Anticorpos Neutralizantes , 60547 , Glicoproteína da Espícula de Coronavírus/genética , COVID-19/prevenção & controle , RNA Mensageiro/genética , Vacinas de mRNA , Lipídeos , Anticorpos Antivirais
17.
Sci Rep ; 14(1): 8426, 2024 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637521

RESUMO

SARS-CoV-2 lipid nanoparticle mRNA vaccines continue to be administered as the predominant prophylactic measure to reduce COVID-19 disease pathogenesis. Quantifying the kinetics of the secondary immune response from subsequent doses beyond the primary series and understanding how dose-dependent immune waning kinetics vary as a function of age, sex, and various comorbidities remains an important question. We study anti-spike IgG waning kinetics in 152 individuals who received an mRNA-based primary series (first two doses) and a subset of 137 individuals who then received an mRNA-based booster dose. We find the booster dose elicits a 71-84% increase in the median Anti-S half life over that of the primary series. We find the Anti-S half life for both primary series and booster doses decreases with age. However, we stress that although chronological age continues to be a good proxy for vaccine-induced humoral waning, immunosenescence is likely not the mechanism, rather, more likely the mechanism is related to the presence of noncommunicable diseases, which also accumulate with age, that affect immune regulation. We are able to independently reproduce recent observations that those with pre-existing asthma exhibit a stronger primary series humoral response to vaccination than compared to those that do not, and further, we find this result is sustained for the booster dose. Finally, via a single-variate Kruskal-Wallis test we find no difference between male and female humoral decay kinetics, however, a multivariate approach utilizing  Least Absolute Shrinkage and Selection Operator (LASSO) regression for feature selection reveals a statistically significant (p < 1 × 10 - 3 ), albeit small, bias in favour of longer-lasting humoral immunity amongst males.


Assuntos
COVID-19 , Imunidade Humoral , Feminino , Masculino , Humanos , Meia-Vida , SARS-CoV-2 , COVID-19/prevenção & controle , Anticorpos , RNA Mensageiro , Anticorpos Antivirais , Vacinação
18.
Sci Rep ; 14(1): 8926, 2024 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637558

RESUMO

To evaluate immune responses to COVID-19 vaccines in adults aged 50 years and older, spike protein (S)-specific antibody concentration, avidity, and function (via angiotensin-converting enzyme 2 (ACE2) inhibition surrogate neutralization and antibody dependent cellular phagocytosis (ADCP)), as well as S-specific T cells were quantified via activation induced marker (AIM) assay in response to two-dose series. Eighty-four adults were vaccinated with either: mRNA/mRNA (mRNA-1273 and/or BNT162b2); ChAdOx1-S/mRNA; or ChAdOx1-S/ChAdOx1-S. Anti-S IgG concentrations, ADCP scores and ACE2 inhibiting antibody concentrations were highest at one-month post-second dose and declined by four-months post-second dose for all groups. mRNA/mRNA and ChAdOx1-S/mRNA schedules had significantly higher antibody responses than ChAdOx1-S/ChAdOx1-S. CD8+ T-cell responses one-month post-second dose were associated with increased ACE2 surrogate neutralization. Antibody avidity (total relative avidity index) did not change between one-month and four-months post-second dose and did not significantly differ between groups by four-months post-second dose. In determining COVID-19 correlates of protection, a measure that considers both antibody concentration and avidity should be considered.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Adulto , Humanos , Pessoa de Meia-Idade , Idoso , Enzima de Conversão de Angiotensina 2 , Vacina BNT162 , Estudos Prospectivos , COVID-19/prevenção & controle , Canadá/epidemiologia , Anticorpos , ChAdOx1 nCoV-19 , RNA Mensageiro , Anticorpos Antivirais , Vacinação
19.
Sci Rep ; 14(1): 8982, 2024 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637586

RESUMO

Many molecular mechanisms that lead to the host antibody response to COVID-19 vaccines remain largely unknown. In this study, we used serum antibody detection combined with whole blood RNA-based transcriptome analysis to investigate variability in vaccine response in healthy recipients of a booster (third) dose schedule of the mRNA BNT162b2 vaccine against COVID-19. The cohort was divided into two groups: (1) low-stable individuals, with antibody concentration anti-SARS-CoV IgG S1 below 0.4 percentile at 180 days after boosting vaccination; and (2) high-stable individuals, with antibody values greater than 0.6 percentile of the range in the same period (median 9525 [185-80,000] AU/mL). Differential gene expression, expressed single nucleotide variants and insertions/deletions, differential splicing events, and allelic imbalance were explored to broaden our understanding of the immune response sustenance. Our analysis revealed a differential expression of genes with immunological functions in individuals with low antibody titers, compared to those with higher antibody titers, underscoring the fundamental importance of the innate immune response for boosting immunity. Our findings also provide new insights into the determinants of the immune response variability to the SARS-CoV-2 mRNA vaccine booster, highlighting the significance of differential splicing regulatory mechanisms, mainly concerning HLA alleles, in delineating vaccine immunogenicity.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , SARS-CoV-2/genética , Vacina BNT162 , Vacinas de mRNA , COVID-19/prevenção & controle , Anticorpos , Imunidade Inata , Anticorpos Antivirais
20.
Sci Rep ; 14(1): 8931, 2024 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637656

RESUMO

Whether mice can be used as a foot-and-mouth disease (FMD) model has been debated for a long time. However, the major histocompatibility complex between pigs and mice is very different. In this study, the protective effects of FMD vaccines in different animal models were analyzed by a meta-analysis. The databases PubMed, China Knowledge Infrastructure, EMBASE, and Baidu Academic were searched. For this purpose, we evaluated evidence from 14 studies that included 869 animals with FMD vaccines. A random effects model was used to combine effects using Review Manager 5.4 software. A forest plot showed that the protective effects in pigs were statistically non-significant from those in mice [MH = 0.56, 90% CI (0.20, 1.53), P = 0.26]. The protective effects in pigs were also statistically non-significant from those in guinea pigs [MH = 0.67, 95% CI (0.37, 1.21), P = 0.18] and suckling mice [MH = 1.70, 95% CI (0.10, 28.08), P = 0.71]. Non-inferiority test could provide a hypothesis that the models (mice, suckling mice and guinea pigs) could replace pigs as FMDV vaccine models to test the protective effect of the vaccine. Strict standard procedures should be established to promote the assumption that mice and guinea pigs should replace pigs in vaccine evaluation.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Vacinas Virais , Animais , Cobaias , Camundongos , Febre Aftosa/prevenção & controle , Anticorpos Antivirais , Modelos Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA